游客
题文

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说
明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

科目 数学   题型 解答题   难度 中等
知识点: 二次剩余
登录免费查看答案和解析
相关试题

已知
(Ⅰ)如果函数的单调递减区间为,求函数的解析式;
(Ⅱ)对一切的,恒成立,求实数的取值范围

为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

.
(1)求函数的单调区间;
(2)若当恒成立,求的取值范围。

已知函数处有极大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1处的切线方程.

已知,计算:
(1);(2);(3);(4)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号