(本小题满分12分)
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当时,求线段
的长;
(2)点M在线段AB上运动时,是否可以使得以C、P、Q为顶点的三角形为直角三角形,若可以,请直接写出t的值(不需解题步骤);若不可以,请说明理由.
(3)若△PCQ的面积为y,请求y关于出t 的函数关系式及自变量的取值范围;
图为抛物线的一部分,它经过A
,B
两点.
(1)求抛物线的解析式;
(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.
已知:如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AC=,D为CB延长线上一点,且BD=2AB.求AD的长
若关于x的方程 有实数根.
(1)求a的取值范围;
(2)若a为符合条件的最小整数,求此时方程的根
计算:
如图,已知抛物线与轴交于点
,
,与
轴交于点
.
(1)求抛物线的解析式及其顶点的坐标;
(2)设直线交
轴于点
.在线段
的垂直平分线上是否存在点
,使得点
到直线
的距离等于点
到原点
的距离?如果存在,求出点
的坐标;如果不存在,请说明理由;
(3)过点作
轴的垂线,交直线
于点
,将抛物线沿其对称轴平移,使抛物线与线段
总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?