(本小题满分14分)已知定义域为的函数
是奇函数。
(Ⅰ)求的值;
(Ⅱ)若对任意的,不等式
恒成立,求
的取值范围;
【原创】若数列的前
项和
,则()
是等比数列 B.
是等差数列
C.当时,
是等比数列 D.当
时,
是等比数列
(本小题满分14分)已知函数处的切线l与直线
垂直,函数
(Ⅰ)求实数的值;
(Ⅱ)若函数存在单调递减区间,求实数
的取值范围;
(Ⅲ)设是函数
的两个极值点,若
,求
的最小值.
【改编题】如图,过顶点在原点,对称轴为轴的抛物线
上的定点
作斜率分别为
的直线,分别交抛物线
于
两点.
求抛物线的标准方程和准线方程;
若,证明:直线
恒过定点.
(本小题满分12分)如图,过四棱柱形木块上底面内的一点
和下底面的对角线
将木块锯开,得到截面
.
(1)请在木块的上表面作出过的锯线
,并说明理由;
(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面
平面
.
(本小题满分12分) 某市有三所高校,其学生会学习部有“干事”人数分别为,现采用分层抽样的方法从这些“干事”中抽取名进行“大学生学习部活动现状”调查.
(1)求应从这三所高校中分别抽取的“干事”人数;
(2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.