( (本小题满分12分) 如图,在直三棱柱ABC—A1B1C1中,.
(Ⅰ)若D为AA1中点,求证:平面B1CD平面B1C1D;
(Ⅱ)若二面角B1—DC—C1的大小为60°,求AD的长.
(本小题满分10分)(选修4-4极坐标与参数方程选讲)
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为,
=
.
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.
(本小题满分10分)(选修4-1几何证明选讲)
如图,已知切⊙
于点
,割线
交⊙
于
两点,∠
的平分线和
分别交于点
.
求证:(1);
(2)
(本小题满分12分)
已知函数在
处的切线
与直线
垂直,函数
.
(1)求实数的值;
(2)若函数存在单调递减区间,求实数b的取值范围;
(3)设是函数
的两个极值点,若
,求
的最小值.
(本小题满分12分)
已知抛物线y2="2px" (p>0)上点T(3,t)到焦点F的距离为4.
(1)求t,p的值;
(2)设A、B是抛物线上分别位于x轴两侧的两个动点,且(其中 O为坐标原点).
(ⅰ)求证:直线AB必过定点,并求出该定点P的坐标;
(ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.
(本小题满分12分)如图,在三棱柱中,已知
,
,
,
.
(1)求证:;
(2)设(0≤≤1),且平面
与
所成的锐二面角的大小为30°,试求的值.