如图,在□ABCD中,,
.点
由
出发沿
方向匀速运动,速度为
;同时,线段
由
出发沿
方向匀速运动,速度为
,交
于
,连接
、
.若设运动时间为
(s)(
).解答下列问题:
(1)当为何值时,
∥
?并求出此时
的长;
(2)试判断△的形状,并请说明理由.
(3)当时,
(ⅰ)在上述运动过程中,五边形的面积 ▲ (填序号)
①变大 ②变小 ③先变大,后变小 ④不变
(ⅱ)设的面积为
,求出
与
之间的函数关系式及
的取值范围.
如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
(1)求证:△AOE≌△COF.
(2)连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形?并说明理由.
在Rt△ABC中,∠ACB=90°,AB=2AC,如图所示,求∠A、∠B的度数.
如图(1),在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其他条件不变,如图(2),如果∠ABC=58°,那么∠DPE=________度.
如图,一根长2a的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为点P,若木棍A端沿墙下滑,且B端沿地面向右滑行.
(1)试判断木棍滑动过程中,点P到点O的距离是否变化?并简述理由.
(2)在木棍滑动过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求面积的最大值.
已知:如图,四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.