(本题共3小题,第(1)小题4分,第(2)、(3)小题每小题5分,满分14分)
如图,在矩形ABCD中,点E在边AD上,联结BE,∠ABE = 30°,BE = DE,联结BD.点M为线段DE上的任意一点,过点M作MN // BD,与BE相交于点N.
(1)如果,求边AD的长;
(2)如图1,在(1)的条件下,如果点M为线段DE的中点,联结CN.过点M作MF⊥CN,垂足为点F,求线段MF的长;
(3)试判断BE、MN、MD这三条线段的长度之间有怎样的数量关系?请证明你的结论.
解不等式组
化简-
.
如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD的长;
(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)如图②,连接DE,当t为何值时,△DEF为直角三角形?
(4)如图③,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
观察下列等式:
①;
②;
③;
……
回答下列问题:
(1)仿照上列等式,写出第n个等式:;
(2)利用你观察到的规律,化简:;
(3)计算:
如图,M、N是正方形ABCD边AB、CD上两动点,连接MN,将四边形BCNM沿MN折叠,使点B落在AD边上点E处、点C落在点F.
(1)求证:BE平分∠AEF;
(2)求证:C△EDG=2AB(注:C△EDG表示△EDG的周长)