(本小题10分)某企业获准生产“上海世博会”纪念徽章,若生产A种款式的纪念徽章125件,B种款式的纪念徽章150件,需生产成本700元;若生产A种款式的纪念徽章100件,B种款式的纪念徽章450件,需生产成本1550元.已知A、B两种纪念徽章的市场零售价分别为2.3元,3.5元.
(1)求A、B两种款式的纪念徽章每个成本是多少元?
(2)随着上海世博会的开幕,为了满足市场的需要,该企业现在每天要生产A、B两种款式的纪念徽章共4500件,若要求每天投入成本不超过1万元,并且每天生产的B种款式的纪念徽章不少于A种款式纪念徽章的.那么每天最多获利多少元,最少获利多少元?
(本小题满分6分)如图二次函数y=+bx+c的图象经过A(-1,0)和B(3,0)两点,且交
轴于点
.
(1)试确定、
的值;
(2)过点C作CD∥x轴轴交抛物线于点D点M为此抛物线的顶点,试确定△MCD的形状.
参考公式:顶点坐标()
如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;
(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长 .
为了落实国家的惠农政策,某地政府制定了农户投资购买收割机的补贴办法,其中购买Ⅰ、Ⅱ两型收割机所投资的金额与政府补贴的额度存在下表所示的函数对应关系:
(1)分别求出和
的函数表达式;
(2)旺叔准备投资10万元购买Ⅰ、Ⅱ两型收割机.请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的补贴金额.
如图,已知二次函数的图像经过A(-1,-1),C(1,3).
(1)求二次函数的解析式并画出它的图像;
(2)直接写出点A关于抛物线对称轴的对称点A'的坐标;
(3)求该抛物线上到x轴的距离为2的所有点的坐标.
如图所示,二次函数的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值;
(2)求点B的坐标;
(3)该二次函数图像上有一点D(x,y)(其中,
),使
,求点D的坐标.