四边形的顶点
.
为坐标原点.
(1)求的外接圆
的方程;
(2)过上的点
作圆的切线
,设
与
轴、
轴的正半轴分别
交于点、
,求
面积的最小值.
已知,设函数
(1)若,求函数
在
上的最小值
(2)判断函数的单调性
在极坐标系下,设圆C:,试求:
(1)圆心的直角坐标表示
(2)在直角坐标系中,设曲线C经过变换得到曲线
,则曲线
的轨迹是什么图形?
已知函数,是否存在实数
,使函数在
上递减,在
上递增?若存在,求出所有
值;若不存在,请说明理由.
已知,复数
,
.
(1)当取何值时,
是实数;
(2)求证:.
甲、乙两个班级进行一次数学考试,按照成绩分为优秀和不优秀两种情况,统计成绩后发现,甲班45名学生中有35人考试成绩不优秀 ,乙班45名学生中有7人考试成绩优秀,试分析:
(1)估计甲班学生数学考试成绩的优秀率
(2)能否有99%的把握认为数学考试成绩优秀与 班级有关?
附:(其中
)
临界值表
P(K2≥k) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
k |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |