等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边
AB、AC交于点E、F.
(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.
(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
已知是⊙
的直径,
是⊙
的切线,
是切点,
与⊙
交于点
.
(1)如图①,若,
,求
的长(结果保留根号);
(2)如图②,若为
的中点,求证:直线
是⊙
的切线.
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、丙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
在如图所示的网格中,每个小方格的边长都是1.
(1)以B为中心,将△ABD顺时针旋转90°,试画出旋转后的图形;
(2)求旋转过程中△ABD扫过图形的面积.
解方程: