游客
题文

在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0),B
(1,0),过顶点C作CH⊥x轴于点H.
(1)a=        ,b=        ,顶点C的坐标为        
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图1,△ABC内接于半径为4cm的⊙O,AB为直径,长为

(1)计算∠ABC的度数;
(2)将与△ABC全等的△FED如图2摆放,使两个三角形的对应边DF与AC有一部分重叠,△FED的最长边EF恰好经过的中点M.求证:AF=AB;

(3)设图2中以A、C、M为顶点的三角形面积为S,求出S的值.

如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=DC,点E在对角线BD上,作∠ECF=90°,连接DF,且满足CF=EC.

(1)求证:BD⊥DF;
(2)当时,试判断四边形DECF的形状,并说明理由.

已知:二次函数中的满足下表:




0
1
2
3



0





(1)求的值;
(2)根据上表求时的的取值范围;
(3)若两点都在该函数图象上,且,试比较的大小.

某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶,每级小台阶都为0.4米.现要做一个不锈钢的扶手AB及两根与FG垂直且长均为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且.

(1)求点D与点C的高度差DH的长度;
(2)求所用不锈钢材料的总长度(即AD+AB+BC).
(结果精确到0.1米.参考数据:

如图,⊙P与y轴相切,圆心为P(-2,1),直线MN过点M(2,3),N(4,1).
(1)请你在图中作出⊙P关于y轴对称的⊙P′;(不要求写作法)

(2)求⊙P在轴上截得的线段长度;
(3)直接写出圆心P′到直线MN的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号