游客
题文

如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(–1,0)三点.过点A作垂直于y轴的直线l. 在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q .连结AP.
求抛物线y=ax2+bx+c的解析式;
是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似.如果存在,请求出点P的坐标,若不存在,请说明理由;
当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

A B 两地间有一段笔直的高速铁路,长度为 100 km .某时发生的地震对地面上以点 C 为圆心, 30 km 为半径的圆形区域内的建筑物有影响.分别从 A B 两地处测得点 C 的方位角如图所示, tan α = 1 . 776 tan β = 1 . 224 .高速铁路是否会受到地震的影响?请通过计算说明理由.

先化简,再求值: x 2 - 4 x + 4 x 2 - 4 ÷ x - 2 x 2 + 2 x + 3 ,其中 x = - 4

计算: ( - 1 2 ) - 1 + 8 3 + 2 cos 60 ° - ( π - 1 ) 0

已知某厂以 t 小时 / 千克的速度匀速生产某种产品(生产条件要求 0 . 1 < t 1 ) ,且每小时可获得利润 60 ( - 3 t + 5 t + 1 ) 元.

(1)某人将每小时获得的利润设为 y 元,发现 t = 1 时, y = 180 ,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行解析说明;

(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;

(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.

某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比 5 - 1 2 0 . 618 .如图,圆内接正五边形 ABCDE ,圆心为 O OA BE 交于点 H AC AD BE 分别交于点 M N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)

(1)求证: ΔABM 是等腰三角形且底角等于 36 ° ,并直接说出 ΔBAN 的形状;

(2)求证: BM BN = BN BE ,且其比值 k = 5 - 1 2

(3)由对称性知 AO BE ,由(1)(2)可知 MN BM 也是一个黄金分割数,据此求 sin 18 ° 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号