已知:如图,抛物线与
轴交于点
,与
轴交于
、
两点,点
的坐标为
.
(1)求抛物线的解析式及顶点的坐标;
(2)设点是在第一象限内抛物线上的一个动点,求使与四边形
面积相等的四边形
的点
的坐标;
(3)求的面积.
如图,点A是5×5网格图形中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作:
(1)以点A为其中的一个顶点,在图(1)中画一个面积等于3的格点直角三角形;
(2)以点A为其中的一个顶点,在图(2)中画一个面积等于的格点等腰直角三角形.
解方程:.
如图,在平面直角坐标系中,已知点A(2,3),B(6,3),连结AB,如果点P在直线y=x-1上 ,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.
(1)判断点C(,
)是否是线段AB的“邻近点” ;
(2)若点Q(m,n)是线段AB的“邻近点”,则m的取值范围 .
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n﹣1)×(n﹣1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n |
2 |
3 |
4 |
5 |
6 |
使用的纸片张数 |
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②用含n的代数式表示S2.
点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.
利用数形结合思想回答下列问题:
(1)数轴上表示2和10两点之间的距离是_________,数轴上表示2和-10的两点之间的距离是______.
(2)数轴上表示x和-2的两点之间的距离表示为____________.
(3)若x表示一个有理数, |x-1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.
(4)若x表示一个有理数,求|x-1|+|x-2|+|x-3|+|x-4|+……+|x-2014|+|x-2015|的最小值.