(本题6分)某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)门票按7折优惠.甲班有56名学生,乙班有54名学生.
(1)若两班学生一起前往该博物馆参观,请问购买门票最少共需花费多少元?
(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要有多少人,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜?
在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 .
(1)求抛物线的表达式;
(2)如图,直线 与抛物线交于 , 两点,与直线 交于点 .若 是线段 上的动点,过点 作 轴的垂线,交抛物线于点 ,交直线 于点 ,交直线 于点 .
①当点 在直线 上方的抛物线上,且 时,求 的值;
②在平面内是否在点 ,使四边形 为正方形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
)已知 和 都是等腰直角三角形 , .
(1)如图1:连 , ,求证: ;
(2)若将 绕点 顺时针旋转,
①如图2,当点 恰好在 边上时,求证: ;
②当点 , , 在同一条直线上时,若 , ,请直接写出线段 的长.
某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 (千克)与每千克售价 (元 满足一次函数关系,其部分对应数据如下表所示:
每千克售价 (元 |
|
25 |
30 |
35 |
|
日销售量 (千克) |
|
110 |
100 |
90 |
|
(1)求 与 之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
如图, 的对角线 , 交于点 ,以 为直径的 经过点 ,与 交于点 , 是 延长线上一点,连接 ,交 于点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的直径.
如图,某海岸边有 , 两码头, 码头位于 码头的正东方向,距 码头40海里.甲、乙两船同时从 岛出发,甲船向位于 岛正北方向的 码头航行,乙船向位于 岛北偏东 方向的 码头航行,当甲船到达距 码头30海里的 处时,乙船位于甲船北偏东 方向的 处,求此时乙船与 码头之间的距离.(结果保留根号)