游客
题文

如图:抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点Q(x,0)是x轴上的一动点,过Q点作x轴的垂线,交抛物线于P点、交直线BA于D点,连结OD,PB,当点Q(x,0)在x轴上运动时,求PD与x之间的函数关系式;四边形OBPD能否成为平行四边形,若能求出Q点坐标,若不能,请说明理由。
(3) 是否存在一点Q,使以PD为直径的圆与y轴相切,若存在,求出Q点的坐标;若不存在,请说明理由.
        

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知,且为锐角,求的值 。

如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是第二象限的抛物线上一动点.

(1)求抛物线的解析式及点C的坐标;
(2)当点P运动到什么位置时,△PAB的面积最大?最大面积是多少?
(3)当(2)中点P运动到△PAB的面积最大时,x轴上是否存在点D,使△PDB的周长最小,若存在,求出点D的坐标,若不存在。请说明理由。

已知二次函数y=x2﹣2(m+1)x+m2+5=0的图像过(a,0)和(b,0).
(1)若(a﹣1)(b﹣1)=28,求m的值;
(2)已知等腰△ABC一边长为7,若a、b旳值恰好是△ABC另外两边的边长,求这个三角形的周长.

某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的 办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.

如图, 某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号