已知如图,矩形的长
,宽
,将
沿
翻折得
.
(1)填空:度,
点坐标为( , );
(2)若两点在抛物线
上,求
的值,并说明点
在此抛物线上;
(3)在(2)中的抛物线段(不包括
点)上,是否存在一点
,使得四边形
的面积最大?若存在,求出这个最大值及此时
点的坐标;若不存在,请说明理由.
已知x2﹣5x=14,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.
已知:如图,E,F是▱ABCD的对角线AC上两点,且AE=CF.求证:BE=DF.
用指定的方法解下列方程:
(1)x2+4x﹣1=0(用配方法);
(2)2x2﹣8x+3=0(用公式法).
如图,已知抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0),B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,作菱形BDEC,使其对角线在坐标轴上,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求抛物线的解析式;
(2)将抛物线向上平移n个单位,使其顶点在菱形BDEC内(不含菱形的边),求n的取值范围;
(3)当点P在线段OB上运动时,直线l交BD于点M.试探究m为何值时,四边形CQMD是平行四边形,并说明理由.
如图,已知正方形ABCD,AC、BD相交于点O,E为AC上一点,AH⊥EB交EB于点H,AH交BD于点F.
(1)若点E在图1的位置,判断OE与OF的数量关系,并证明你的结论;
(2)若点E在AC的延长线上,请在图2中按题目要求补全图形,判断OE与OF的数量关系,并证明你的结论.