设数列前项和为,且。其中为实常数,且。(1)求证:是等比数列;(2)若数列的公比满足且,求的通项公式;(3)若时,设,是否存在最大的正整数,使得对任意均有成立,若存在求出的值,若不存在请说明理由。
(本小题共13分) 已知函数(). (Ⅰ)求函数的单调区间; (Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。
(本小题共13分) 数列{}中,,,且满足 (1)求数列的通项公式; (2)设,求.
(本小题共13分) 如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。 (Ⅰ)求证: (Ⅱ)求证: (Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。
(本小题共13分) 已知,. (Ⅰ)求的值; (Ⅱ)求函数的值域.
将圆心角为1200,面积为3的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号