已知集合,
,
,
且,求
的取值范围。
。
。
(1)求上的值域;
(1)在ΔABC中,若的值。
如图,在四面体ABCD中,CB="CD," AD⊥BD,点E、F分别是AB, BD的中点,求证:
(1)直线EF//平面ACD;
(2)平面EFC⊥平面BCD。
(本题18分)
已知:正数数列的通项公式
(1)求数列的最大项;
(2)设,确定实常数
,使得
为等比数列;
(3)(理)数列,满足
,
,其中
为第(2)小题中确定的正常数,求证:对任意
,有
且
或
且
成立.
(文)设是满足第(2)小题的等比数列,求使不等式
成立的最小正整数
.
(本题16分)
如图,F是抛物线的焦点,Q是准线与
轴的交点,斜率为
的直线
经过点Q.
(1)当K取不同数值时,求直线与抛物线交点的个数;
(2)如直线与抛物线相交于A、B两点,求证:
是定值
(3)在轴上是否存在这样的定点M,对任意的过点Q的直线
,如
与抛物线相交于A、B两点,均能使得
为定值,有则找出满足条
件的点M;没有,则说明理由.