(本小题满分12分)已知的反函数为
,
.
(1)若,求
的取值范围D;
(2)设函数,当
时,求函数
的值域.
已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若函数f(x)在x=-2处有极值,求f(x)的表达式;
(Ⅱ)若函数y=f(x)在区间[-2,1]上单调递增,求实数b的取值范围.
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,AB
AD,M为EC的中点,AF=AB=BC=FE=
AD
(1)证明平面AMD平面CDE;
(2)求二面角A-CD-E的余弦值
已知
的角
、
、
所对的边分别是
、
、
,设向量
,
,
.
(1)若
,求证:
为等腰三角形;
(2)若
,边长
,角
,求
的面积.
设函数表示f(x)导函数。
(I)求函数一份(x))的单调递增区间;
(Ⅱ)当k为偶数时,数列{}满足
.证明:数列{
}中
不存在成等差数列的三项;
(Ⅲ)当后为奇数时,证明:对任意正整数,n都有成立.
已知双曲线的左、右两个焦点为
,
,动点P满
足|P|+| P
|=4.
(I)求动点P的轨迹E的方程;
(1I)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:终段O
上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.