在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.
(1)试问小球通过第二层位置的概率是多少?
(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层
位置处的概率各是多少? 解:
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且D点的横坐标是它的纵坐标的2倍.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
如图,已知直线与双曲线
交于
两点,且点
的横坐标为
.
(1)求的值;
(2)若双曲线上一点
的纵坐标为8,求
的面积;
(3)过原点的另一条直线
交双曲线
于
两点(
点在第一象限),若由点
为顶点组成的四边形面积为
,求点
的坐标.
如图,在直角坐标系xOy中,直线与双曲线
相交于A(-1,a)B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
(1)求m、n的值;
(2)求直线AC的解析式;
(3)结合图象直接写出当时,
的取值范围.
如图,在平面直角坐标系xOy中,点,B(3,n)在反比例函数
(m为常数)的图象G上,连接AO并延长与图象G的另一个交点为点C,过点A的直线l与x轴的交点为点D(1,0),过点C作CE∥x轴交直线l于点E.
(1)求m的值及直线l对应的函数表达式;
(2)求点E的坐标;
(3)求证:∠BAE=∠ACB.
如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.
(1)求反比例函数及直线BD的解析式;
(2)求点E的坐标.
(3)并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?