计算:(每小题6分,共12分)
(1); (2)
.
如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用 表示.已知抛物线上 , 两点到地面的距离均为 ,到墙边 的距离分别为 , .
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为 ,则最多可以连续绘制几个这样的拋物线型图案?
甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩 环 |
中位数 环 |
众数 环 |
方差 |
|
甲 |
|
7 |
7 |
1.2 |
乙 |
7 |
|
8 |
|
(1)写出表格中 , , 的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
如图, 是长为 ,倾斜角为 的自动扶梯,平台 与大楼 垂直,且与扶梯 的长度相等,在 处测得大楼顶部 的仰角为 ,求大楼 的高度(结果保留整数).
(参考数据: , , ,
(1)化简:
(2)解不等式组 ,并写出它的整数解.
如图,在平面直角坐标系中,直线 与 轴, 轴相交于 , 两点,点 的坐标是 ,连接 , .
(1)求过 , , 三点的抛物线的解析式,并判断 的形状;
(2)动点 从点 出发,沿 以每秒2个单位长度的速度向点 运动;同时,动点 从点 出发,沿 以每秒1个单位长度的速度向点 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为 秒,当 为何值时, ?
(3)在抛物线的对称轴上,是否存在点 ,使以 , , 为顶点的三角形是等腰三角形?若存在,求出点 的坐标;若不存在,请说明理由.