(本题12分)
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.
第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.
第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.
请利用上述结论解决下列问题:
(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则=_________.
(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若
=8,则
=_________,k=_________.
(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.
(本题10分)某工厂设门市部专卖某产品,该产品每件成本30元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:
销售单位(元) |
50 |
60 |
70 |
75 |
80 |
85 |
… |
日销售量(件) |
300 |
240 |
180 |
150 |
120 |
90 |
… |
假设每天定的售价是不变的,且每天销售情况均服从这种规律.
(1)观察表格判断日销售量与销售价格之间的函数关系,并求出函数关系式;
(2)门市部原设定两名销售员,但当销售量较大时,在每天售出量超过198件时,则必须增派一名营业员才能保证营业有序进行.设营业员每人每天工资为40元,求每件产品应定价多少元,才能使每天门市部纯利润最大?(纯利润=总销售﹣成本﹣营业员工资)
(本题9分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.
(1)求证:AE•BC=BD•AC;
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.
(本题9分)已知关于x的一元二次方程+6x=4m﹣3有实数根.
(1)求m的取值范围;
(2)设方程的两实根分别为与
,且
=
·
+7,求m的值.
(本题9分)如图,在菱形ABCD中,AB=2,∠BAD =60º,AC交BD于点O,以点D为圆心的⊙D与边AB相切于点E.
(1)求AC的长;(2)求证:⊙D与边BC也相切