如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm2?
解方程:
(1)4x-5=x+7
(2)4(2x-3)-(5x-1)=7
(3)
(4)
计算:
(1)
(2)
(3)3f + 2f-6f
(4)x-y-(5x-4y)
如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用60张长为6,宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:
方法一:如图2,每张卡纸剪出3个立方体表面展开图;
方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).
设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.要求制作的长方体的个数不超过立方体的个数.
(1)在图3中画出第二个长方体表面展开图,用阴影表示;
(2)请你写出y关于x的函数解析式,并注明自变量x的取值范围;
(3)设每只模型(包括立方体和长方体)平均获利为w(元),w满足函数,
若想将模型作为教具卖出获得最大利润,则应该制作立方体和长方体各多少个?最大利润是多少?
如图,在边上为1个单位长度的小正方形网格中:
(1)画出△ABC向上平移6个单位长度,再向右平移 5个单位长度后的△A1B1C1.
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
(3)求△CC1C2的面积.
已知二次函数y=x2+2x-3.
(1)求此二次函数的图象与x轴的交点坐标;
(2)此二次函数的图象经怎样平移,使顶点变为A(3,0),请你描述平移的过程.