如图:在平面直角坐标系中A(-1,5),B(-1,0)C(-4,3).
(1)求出△ABC的面积。
(2)在下图中作出△ABC关于y轴对称图形△A1B1C1(3分)
(3)写出A1 、B1 、C1的坐标(3分)
![]() |
如图,已知反比例函数与一次函数
的图象在第一象限相交于点A(1,
)
(1)试确定这两个函数的表达式;
(2)求出这两个函数图像的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
我市2014年中考的体育考试项目和实验考试项目采用抽签方式决定,规定:实验抽考测密度、欧姆定律、二氧化碳制取三个实验项目中的一个(用纸签A、B、C表示)。体育中考的跳绳、篮球运球投篮、立定跳远三个项目(用纸签D、E、F表示)抽取一项进行考试。在看不到纸签的情况下,分别从中各随机抽取一个.
(1)用“列表法”或“树状图法”表示所有可能出现的结果;
(2)聪聪抽到B和F(记作事件M)的概率是多少?
解方程
(1)x2-x+
=0
(2)3(x+1)2-5(x+1)-2=0
如图,二次函数与x轴交于A﹑B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G.
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当点P运动时,线段EG的长度是否发生改变,请说明理由。
△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连CF
(1)如图,当D点在BC上时,试探索BE与CF的关系,并证明。
(2)如图,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明;如果不成立,请写出相应的正确的结论并加以证明。