游客
题文

(本题满分10分)
如图,一艘轮船由A港沿北偏东方向航行10km至B港,再沿北偏西方向航行10km到达C港.
   (1)求A、C两港之间的距离(精确到1km)
(2)求点C相对于点A位置.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图①,已知直线y=3x+3与x轴交于点A,与y轴交于点D,与直线y=交于点E,
过点D作DC∥x轴,交直线y=于点C.过点C作CB∥AD交x轴于点B.
(1)点C的坐标是
(2)以线段AD的中点M为圆心作⊙M,当⊙M与直线CE相切时,求⊙M的半径;
(3)如图②,点P从点O出发,沿线段OC向终点C运动,点Q从点C出发,沿线段CD向终点D运动.若P、Q两点同时出发,速度均为1单位长度/s,时间为ts,当点Q到达终点时,P、Q两点均停止运动.在点P、Q的运动过程中,将线段PQ绕点P沿顺时针方向旋转90°后,设点Q的对应点为R.当点R落在四边形ABCD一边所在的直线上时,直接写出t的值.

直角坐标系中,已知A(1,0),以点A为圆心画圆,点M(4,4)在⊙A上,直线y=x+b过点M,分别交x轴、y轴于B、C两点.

(1)填空:⊙A的半径为 ,b= .(不需写解答过程)
(2)判断直线BC与⊙A的位置关系,并说明理由.
(3)点D是线段OC上的一点,连接MA、MD并延长交⊙A于E、F,若AE⊥AF,求点D的坐标.

一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.

如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留π).

在等腰△ABC中,三条边分别是a,b,c,其中b=6.若关于x的一元二次方程有两个相等的实数根,求△ABC的周长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号