如图,在多面体ABCDEFG中,四边形ABCD是边长为2的正方形,平面ABG、平面ADF、平面CDE都与平面ABCD垂直,且ΔABG, ΔADF,ΔCDE都是正三角形.
(I)求证:AC// EF;
(II) 求多面体ABCDEFG的体积.
“低碳经济”是促进社会可持续发展的推进器.某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为;如果投资“低碳型”经济项目,一年后可能获利30%,也
可能损失20%,这两种情况发生的概率分别为a和n (其中a + b =1 )如果把100万元投资“传统型”经济项目,用表示投资收益(投资收益=回收资金一投资资金),求
的概率分布及均值(数学期望)
;(II)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围
在等比数列中,
,且
,又
的等比中项为16.
(I) 求数列的通项公式:
(II) 设,数列
的前项和为
,是否存在正整数k,使得
对任意
恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.
设函数,(w为常数,且m >0),已知函数f(x)的最大值为2.
(I)求函数的单调递减区间;
(II)已知a,b,c是的三边,且
.若,
,求B的值.
如图,∠BAC的平分线与BC和外接圆分别相交于D和E,
延长AC交过D,E,C三点的圆于点F。
(Ⅰ)求证:;
(Ⅱ)若,求
的值。