(本题3分+3分+4分)如图,已知二次函数的图象与x轴交于A、B两点,与y轴交于点P,顶点为C(
)。
(1)求此函数的关系式;
(2)作点C关于x轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标;若不存在,请说明理由。
如图,在△ABD和△AEC中,E为AD上一点,若∠DAC =∠B,∠AEC =∠BDA. 求证:.
已知:梯形ABCD中,AD∥BC,∠ABC=90°,BE⊥CD于点E.DP⊥CB于点P,连接AP、PE.如图1,若∠C=45°,求证:AP= AE.
如图2,若∠C=60°,直接写出线段AP、AE的数量关系.
在(1)的条件下,将线段EA绕点E顺时针旋转得到线段EA′,使∠DEA′=∠DAE,直线EA′分别与线段BA延长线、线段BC交于点N、点K,已知AD=1,EK=.求线段NE的长.
如图,平面直角坐标系中,点A(4,0),直线AB与y轴交于点B,S△AOB=6,点P从点A出发,以每秒1个单位的速度沿x轴正方向运动.
求B点坐标。
过点B作射线L∥x轴,动点Q从B出发,以每秒2个单位的速度,沿射线L运动.若动点P、Q同时运动,过点A作AC⊥AB,射线AC与射线PQ、射线L分别交于点C、K.设运动时间为t秒,线段KQ的长为y个单位.求y与t的函数关系式,并直接写出自变量t的取值范围.
在(2)的条件下,若D为BC中点.在点P、Q运动过程中是否存在t值, 以A、C、D、Q为顶点的四边形是平行四边形,若存在,求出t值;若不存在,请说明理由.
小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.
大笔记本 |
小笔记本 |
|
价格(元/本) |
a |
b |
页数(页/本) |
100 |
60 |
(1)文具店一本大笔记本与一本小笔记本的售价和为11元,用12元钱购买的大笔记本数量与用10元钱购买的小笔记本数量相同.求a、b的值.
(2)在(1)的条件下,为了节约资金,小明应购买两种笔记本各多少本?
我校非毕业学年举行“体育节”,同学们积极参加体育锻炼,小铭就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)求该班共有多少名学生;
(2)补全条形统计图;
(3)若我校非毕业学年有5800名学生,请计算出最喜爱“乒乓球”部分的学生人数.