(本题8分)已知关于的方程
的两实根为
,且
.
⑴试用含有的代数式表示
和
;
⑵求证:;
⑶若以为坐标的点
在△ABC的三边上运动,且△ABC顶点的坐标分别为A
,B
,C
,问是否存在点M,使
,若存在,求出点M的坐标;若不存在,请说明理由.
在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构”.
小明受此启发设计了一个“双连杆机构”,设计图如图①,两个固定长度的“连杆” 的连接点 在 上,当点 在 上转动时,带动点 分别在射线 上滑动, .当 与 相切时,点 恰好落在 上,如图②.请仅就图②的情形解答下列问题.
(1)求证: ;
(2)若 的半径为 ,求 的长.
如图,已知 是四边形 的外接圆,直线 相交于点 是弦 的中点,延长直线 交弦 于点 ,求证:
(1) ;
(2) .
如图,已知正方形 ,点 是 边上一点,将 沿直线 折叠,点 落在 处,连接 并延长,与 的平分线相交于点 ,与 分别相交于点 , ,连接 .
(1)求证:
(2)若 ,求点 到直线 的距离;
(3)当点 在 边上(端点除外)运动时, 的大小是否变化?为什么?
如图所示,在 中, 为 边上一点, 是方程 的一个较大的根,求 的长
如图,已知 中, 是 的外接圆, 是 边上的高, 是 的垂心,连接 ,连接 并延长交 于点 ,交 于点 ,求证:
(1) ;
(2) 等于 外接圆半径;
(3) .