在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,−9,+8,−7,13,−6,+10,−5.
(1)B地在A地何处?
(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?
解方程:x2-8x +1=0.
在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A
在点B的左侧),与y轴交于点C(0 , 4),D为OC的中点.(1)求m的值;
(2)抛物线的对称轴与x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与
相似?若存在,请求出点F的坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为
?若存在,求出点G的坐标;若不存在,请说明理由.
已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF. (1)如图1, 当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=
,求此时线段CF的长(直接写出结果).
已知:关于的方程
.
当a取何值时,方程
有两个不相等的实数根;
(2)当整数a取何值时,方程
的根都是正整数.
李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;
(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)