本小题满分12分)已知函数是偶函数.(I)证明:对任意实数,函数的图象与直线最多只有一个交点;(II)若方程有且只有一个解,求实数的取值范围.
已知函数,若对任意恒有,求的取值范围。
.设函数f(x)=-a+x+a,x∈(0,1],a∈R*. (1)若f(x)在(0,1]上是增函数,求a的取值范围; (2)求f(x)在(0,1]上的最大值.
已知数列Sn为该数列的前n项和,计算得 观察上述结果,推测出Sn(n∈N*),并用数学归纳法加以证明.
求证:
已知函数. (1)若函数的图象过原点,且在原点处的切线斜率是,求的值; (2)若函数在区间上不单调,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号