如图所示,将矩形沿
折叠,使点
恰好落在
上
处,以
为边作正方形
,延长
至
,使
,再以
、
为边作矩形
.
(1). 试比较、
的大小,并说明理由.
(2). 令,请问
是否为定值?若是,请求出
的值;若不是,请说明理由.
为定值.
(3). 在(2)的条件下,若为
上一点且
,抛物线
经过
、
两点,请求出此抛物线的解析式.
(4). 在(3)的条件下,若抛物线与线段
交于点
,试问在直线
上是否存在点
,使得以
、
、
为顶点的三角形与
相似?若存在,请求直线
与
轴的交点
的坐标;若不存在,请说明理由.
蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?
在矩形ABCD中, AC,BD相交于点O,AE平分∠BAD交BC于点E,∠EAO=15°,求∠BEO的度数.
已知,求下列各式的值.
(1)
(2)
(1)解不等式组:;
(2)解不等式,并写出该不等式组的整数解.
(本题12分)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。如对于任意正实数、x,可作变形:x+
=(
-
)2+2
,因为(
-
)2≥0,所以x+
≥2
(当x=
时取等号).
记函数y=x+(a>0,x>0),由上述结论可知:当x=
时,该函数有最小值为2
.
直接应用: 已知函数y1=x(x>0)与函数y2 = (x>0),则当x= 时,y1+y2取得最小值为.
变形应用: 已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求 的最小值,并指出取得该最小值时相应的x的值.
实际应用:汽车的经济时速是指汽车最省油的行驶速度。某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+
)升。若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
①求y关于x的函数关系式(写出自变量x的取值范围);
②求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).