在平面直角坐标系中,已知以O为圆心的圆与直线
恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使、
、
成等比数列,求
的范围;
(3)已知定点Q(−4,3),直线
与圆O交于M、N两点,试判断
是否有最大值,若存在求出最大值,并求出此时直线
的方程,若不存在,给出理由.
,求证:
已知的图象向左平移
个单位(
),得到的图象关于直线
对称.
(Ⅰ)求的最小值。
(Ⅱ)若方程在(
)内有两个不相等的实根
,求实数
的取值范围及
的值.
是否存在实数a,使得函数y=sin2x+acosx+a-
在闭区间
上的最大值是1?若存在,求出对应的a值;若不存在,说明理由.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.
(Ⅰ)求直线与圆
相切的概率;
(Ⅱ)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
晚会上,主持人面前放着A、B两个箱子,每箱均装有三个球,各箱的三个球分别标有号码1,2,3. 现主持人从A、B两箱中各摸出一球.
(Ⅰ)若用x、y分别表示从A、B两箱中摸出的球的号码,请写出数对(x,y)的所有情形,并回答一共有多少种;
(Ⅱ)求所摸出的两球号码之和为5的概率;
(Ⅲ)如果请你猜摸出的这两球的号码之和,并且猜中有奖,那么猜什么数获奖的可能性最大?说明理由.