游客
题文

(本小题满分12分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.求:
(1)则袋中原有白球的个数;
(2)取球2次终止的概率;
(3)甲取到白球的概率

科目 数学   题型 解答题   难度 中等
知识点: 随机事件
登录免费查看答案和解析
相关试题

(本小题满分12分)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号的和为6的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.

(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(I) 证明:PQ⊥平面DCQ;
(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.

(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是.
(1)求红色球的个数;
(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C-ANB1A1的体积.

(本小题满分12分)分别用二种方法写出算法语句,计算:1+2+3+……+99+100.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号