(本题满分14分,第(1)小题7分,第(2)小题7分)
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。已知每投放质量为
的药剂后,经过
天该药剂在水中释放的浓度
(毫克/升) 满足
,其中
,当药剂在水中释放的浓度不低于
(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于
(毫克/升) 且不高于10(毫克/升)时称为最佳净化。
(1)如果投放的药剂质量为,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量
的值。
设,函数
.
(Ⅰ)当时,求函数
的单调增区间;
(Ⅱ)若时,不等式
恒成立,实数
的取值范围.
(本题满分15分) 设椭圆C1:
的左、右焦点分别是F1、F2,下顶点为A,线段OA
的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求
面积的最大值.
如图,已知平行六面体中,底面
是边长为
的菱形,侧棱
且
;
(Ⅰ)求证:平面
及直线
与平面
所成角;
(Ⅱ)求侧面与侧面
所成的二面角的大小的余弦值
本题满分14分)设,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(Ⅰ)求证:;
(Ⅱ)设,
,求证:
.
已知函数
(),且函数
的最小正周期为
.
(Ⅰ)求函数的解析式;
(Ⅱ)在△中,角
所对的边分别为
.若
,
,且
,试求
的值.