(本题满分15分) 设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA 的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.(Ⅰ)求椭圆C1的方程;(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.
已知的顶点、、,边上的中线所在直线为. (Ⅰ) 求的方程; (Ⅱ) 求点关于直线的对称点的坐标.
设, (1)若在上无极值,求值; (2)求在上的最小值表达式; (3)若对任意的,任意的,均有成立,求的取值范围.
已知函数, (1)若,求的单调区间; (2)若函数存在两个极值点,且都小于1,求的取值范围;
已知为奇函数的极大值点, (1)求的解析式; (2)若在曲线上,过点作该曲线的切线,求切线方程.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式; (2)当为何值时,有最大值,并求出该最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号