设,
(1)若在
上无极值,求
值;
(2)求在
上的最小值
表达式;
(3)若对任意的,任意的
,均有
成立,求
的取值范围.
已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,,
,问是否存在最小正整数n使得
成立?若存在,试确定n的值,不存在说明理由.
第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京召开.为了做好两会期间的接待服务工作,中国人民大学学生实践活动中心从7名学生会干部(其中男生4人,女生3人)中选3人参加两会的志愿者服务活动.
(1)所选3人中女生人数为,求
的分布列及数学期望:
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.
己知函数
(1)当时,求函数
的最小值和最大值;
(2)设ABC的内角A,B,C的对应边分别为a,b,c,且c=
,f(C)=2,若向量m=(1,a)与向量n=(2,b)共线,求a,b的值.
若函数的图象与直线y=m相切,相邻切点之间的距离为
.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且,求点A的坐标.
已知
(1)若,求x的范围;
(2)求的最大值以及此时x的值.