:甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关于x的方程有实数解的概率.
(2)求(1)中方程有两个相同实数解的概率.
本题满分9分.
已知关于x的方程x2 + 2x + a – 2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根。
本题满分7分.
已知a +b=-,求代数式(a-1)2 +b(2a + b)+2a的值.
如图,在平面直角坐标系中,抛物线经过点
,其对称轴与
轴交于点
.
(1)求此抛物线的解析式和对称轴;
(2)在此抛物线的对称轴上是否存在一点
,使
的周长最小?若存在,请求出点
的坐标;若不存在,请说明理由;
(3)连接AC,在直线
下方的抛物线上,是否存在一点
,使
的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(要求写出两种情况):或者.
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.