游客
题文

如图,抛物线过原点O,与x轴交于A,点D(4,2)在该抛物线上,过点D作CD∥x轴,交抛物线于点C,交y轴于点B,连结CO、AD.
求抛物线的解析式及点C的坐标
将△BCO绕点O按顺时针旋转90°后                                      再沿x轴对折得到△OEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
设过点E的直线交OA于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形AOCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边ABBC相交于点DEEFAC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.

台风是夏季影响城市安全的重要因素之一。如图,坡上有一棵与水平面EF垂直的大树AB,被台风吹过后,大树倾斜并折断倒在山坡上,大树顶部B接触到坡面上的D点。已知山坡的坡角∠AEF=30°,量得树干倾斜角∠BAC=45°,大树被折断部分和坡面所成的角∠ADC=60°且AD=4米.

(1)求∠CAE的度数;(2)求这棵大树折断前的高度AB.
(结果精确到个位,参考数据:≈1.4,≈ 1.7,≈2.4)

为迎接建党91周年,我市某中学拟组织学生开展唱红歌比赛活动.为此,校团委对初一4班会唱红歌的学生进行了统计(甲:会唱1首,乙:会唱2首,丙:会唱3首,丁:会唱4首及以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:

(1)在条形统计图中,将会唱4首及以上的部分补充完整;
(2)求该班会唱1首的学生人数占全班人数的百分比;
(3)在扇形统计图中,计算出会唱3首的部分所对应的圆心角的度数;
(4)若该校初一共有350人,请你估计会唱2首红歌的学生约有多少人?

有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2 和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.

(1)解方程(2)解不等式组:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号