游客
题文

某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?   

科目 数学   题型 解答题   难度 较易
知识点: 多元一次方程组
登录免费查看答案和解析
相关试题

把下列各式分解因式(每题4分,共16分)
(1)(a-3)2+(3-a)
(2)x2+16y2-8xy
(3) x5-x3
(4)9m2-n2+3m-n

解不等式组

解不等式:3x-,并把解集在数轴上表示出来

(本小题满分12分)如图,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线过点、点,且与轴的另一交点为,其中>0,又点是抛物线的对称轴上一动点.
(1)求点的坐标,并在图1中的上找一点,使到点与点的距离之和最小;
(2)若△周长的最小值为,求抛物线的解析式及顶点的坐标;
(3)如图2,在线段上有一动点以每秒2个单位的速度从点向点移动(不与端点重合),过点轴于点,设移动的时间为秒,试把△的面积表示成时间的函数,当为何值时,有最大值,并求出最大值.

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2
求证:S1S2=1∶3;
(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号