(本题6分)随着我国经济的高速发展,有着“经济晴雨表”之称的股市也得到迅速的发展,下表是今年上证指数某一周星期一至星期五的变化情况. (注:上周五收盘时上证指数为2616点,每一天收盘时指数与前一天相比,涨记为“+”,跌记为“-”)
星 期 |
一 |
二 |
三 |
四 |
五 |
指数的变化(与前一天比较) |
![]() |
![]() |
![]() |
![]() |
![]() |
⑴ 请求出这一周星期五收盘时的上证指数是多少点?
⑵ 说出这一周每一天收盘时上证指数哪一天最高?哪一天最低?分别是多少点?
在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)
(1)请判断ED与AB的位置关系,并说明理由.
(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.
已知关于x的方程(x-3)(x-2)-p2=0.
(1)求证:方程总有两个不相等的实数根.
(2)设方程的两根为x1,x2(x1<x2),则当0≤p<时,请直接写出x1和x2的取值范围.
如图,已知抛物线y=-ax2+2ax+3a(a≠0)与x轴交于A、B两点,与y轴交于点C.
(1)请直接写出A、B两点的坐标.
(2)当a=,设直线AC与抛物线的对称轴交于点P,请求出△ABP的面积.
计算:
(1)用公式法解方程:x2+3x-2=0
(2)已知a2+a=0,请求出代数式的值.
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设,
,
.
特例探索
(1)如图1,当∠=45°,
时,
= ,
;
如图2,当∠=30°,
时,
= ,
;
归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD= ,AB=3.求AF的长.