(满分l4分)已知:抛物线y=x2-(a+2)x+9的顶点在坐标轴上.
(1)求a的值;
(2)若该抛物线的顶点C在x轴的正半轴上,而此抛物线与直线Y=x+9交于A,B两点,且A点在B点左侧,P为线段AB上的点(A,B两端点除外).过点P作x轴的垂线与抛物线交于点Q(可在图中画示意图).问:
①线段AB上是否存在这样的点P,使得PQ的长等于6?若存在,请求出点P的坐标;若不存在,请说明理由.
②线段AB上是否存在这样的点P,使得△ABQ∽△OAC?若存在,请求出此时点Q的坐标;若不存在,请说明理由.
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg.为了尽快售出,该经营户决定降价促销,经调查发现,这种小型西瓜每降价0.1元/kg,每天可多售出40kg.另外,经营期间每天还需支出固定成本24元.该经营户要想每天至少盈利200元,应将每千克小型西瓜的售价降低多少元?
已知二次函数.
(1)求抛物线顶点M的坐标;
(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;
(3)根据图象,求不等式的解集.
已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.
如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.
(1)在网格中画出△A1OB1,并标上字母;
(2)点A关于O点中心对称的点的坐标为 ;
(3)点A1的坐标为 ;
(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为 .