游客
题文

为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到0.1厘米)

 
AC
BC
AB
r

S
图甲
 
 
 
0.6
 
 
图乙
 
 
 
1.0
 
 

(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
(3)       

科目 数学   题型 解答题   难度 较易
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.

(1)求证:CF为⊙O的切线;
(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.

已知二次函数y=ax2+bx+c中自变量x和函数值y的部分对应值如下表:

x

-1
0
1
2
3

y

10
5
2
1
2

(1)求该二次函数的函数关系式;
(2)在所给的直角坐标系中画出此函数的图象;
(3)求出y≤10时自变量x的取值范围(可以结合图象说理).

如图,一堤坝的坡角∠ABC=60°,坡面长度AB=24米(图为横截面).为了使堤坝更加牢固,需要改变堤坝的坡面,为使得坡面的坡角∠ADB=50°,则应将堤坝底端向外拓宽(BD)多少米?(结果精确到0.1米)(参考数据:≈1.73,sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)

如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.

(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?

不透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.
(1)如果从袋中任意摸出一个球,那么摸到标有数字为3的球的概率是
(2)小明和小亮进行摸球游戏,游戏规则如下:先由小明从袋中任意摸出一个球,记下球的数字后放回袋中搅匀,再由小亮从袋中任意摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.这个游戏规则对双方公平吗?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号