已知数列的前项和为,数列满足:,前项和为,设。 (1)求数列的通项公式; (2)是否存在自然数k, 当时,总有成立,若存在,求自然数的最小值。若不存在,说明理由。
已知函数. (Ⅰ)当时,求值; (Ⅱ)若存在区间(且),使得在上至少含有6个零 点,在满足上述条件的中,求的最小值.
已知函数. (Ⅰ)求的值; (Ⅱ)用函数单调性的定义证明函数在上是减函数.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ) 求函数的单调递增区间.
已知:函数的定义域为,集合. (Ⅰ)求集合; (Ⅱ)求.
已知函数,其中 (Ⅰ)若是函数的极值点,求实数的值; (Ⅱ)若对任意的(为自然对数的底数)都有成立,求实数的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号