甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是
,甲、乙、丙三人都不能通过测试的概率是
,且乙通过测试的概率比丙大.
(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数的数学期望
.
已知椭圆经过点
其离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆
相交于A、B两点,以线段
为邻边作平行四边形OAPB,其中顶点P在椭圆
上,
为坐标原点.求
的取值范围.
一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
已知数列是首项为
且公比q不等于1的等比数列,
是其前n项的和,
成等差数列.证明:
成等比数列.
已知等差数列中,
,前10项的和
(1)求数列的通项公式;
(2)若从数列中,依次取出第2、4、8,…,
,…项,按原来的顺序排成一个新的数列
,试求新数列
的前
项和
.
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点P作直线PF的垂线交直线
于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.