一辆汽车沿着一条南北方向的公路来回行驶。某一天早晨从A地出发,晚上到达B地。
约定向北为正,向南为负,当天记录如下:(单位:千米)
-18.3, -9.5, +7.1, -14, -6.2, +13, -6.8, -8.5
(1)问B地在A地何处,相距多少千米?
(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?
先化简,再求值:,在0,1,2,三个数中选一个合适的,代入求值.
如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.
解不等式组并将解集在数轴上表示出来.
已知,如图(a),抛物线经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。∠ONE=30°,
。
(1)求抛物线的解析式及顶点D的坐标;
(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;
(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由。
一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x |
3000 |
3200 |
3500 |
4000 |
y |
100 |
96 |
90 |
80 |
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:
租出的车辆数 |
未租出的车辆数 |
||
租出每辆车的月收益 |
所有未租出的车辆每月的维护费 |
(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.