运动会前夕,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮的速度始终是220米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:
⑴请直接写出小明和小亮比赛前的速度.
⑵请在图中的( )内填上正确的值,并求两人比赛过程中y与x之间的函数关系式.(不用写自变量x的取值范围)
⑶若小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,则再经过多少分钟两人相遇?
先化简,再求值:,其中
.
如图,已知∠MON两边分别为OM、ON,sin∠O=且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.
(1)若⊙A交∠O 的边OM于B、C两点,BC=y,求y关于x的函数解析式,并写出函数的定义域;
(2)将⊙A沿直线OM翻折后得到⊙A′.
①若⊙A′与直线OA相切,求x的值;
②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.
如图,直线y=4x+4与x轴、y轴相交于B、C两点,抛物线y=ax2-2ax+c(a≠0)过点B、C,且与x轴另一个交点为A,以OC、OA为边作矩形OADC,CD交抛物线于点G.
(1)求抛物线的解析式以及点A的坐标;
(2)已知直线x=m交OA于点E,交CD于点F,交AC于点M,交抛物线(CD上方部分)于点P,请用含m的代数式表示PM的长;
(3)在(2)的条件下,联结PC,若△PCF和△AEM相似,求m的值.
已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,点E是BC的中点、F是CD上的点,联结AE、EF、AC.
(1)求证:AO•OF=OC•OE;
(2)若点F是DC的中点,联结BD交AE于点G,求证:四边形EFDG是菱形.
春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:
(1)抽查了 个班级,并将该条形统计图(图2)补充完整;
(2)扇形图(图1)中患流感人数为4名所在扇形的圆心角的度数为 ;
(3)若该校有45个班级,请估计该校此次患流感的人数.