已知+
=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.
已知的展开式中,某一项的系数是它前一项系数的2倍,而等于它后一项的系数的
.
(1)求该展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
|
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = O,A1C1
B1D1 = O1,E是O1A的中点.
已知函数.
(1)若在x = 0处取得极值为 – 2,求a、b的值;
(2)若在
上是增函数,求实数a的取值范围.
设集合,若
,求实数a的取值范围.
已知函数.
(1)若函数的图象在点P(1,
)处的切线的倾斜角为
,求实数a的值;
(2)设的导函数是
,在 (1) 的条件下,若
,求
的最小值.
(3)若存在,使
,求a的取值范围.