游客
题文

某地政府为科技兴市,欲在如图所示的矩形的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形(线段为两个底边),已知

其中曲线段是以为顶点、为对称轴的抛物线的一部分.分别以直线轴和轴建立平面直角坐标系.(1)求曲线段所在抛物线的方程;(2)设点的横坐标为,高科技工业园区的面积为.试求关于的函数表达式,并求出工业园区面积的最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线C1的方程为ρ2=8ρsinθ﹣15,曲线 C2的方程为为参数).
(1)将C1的方程化为直角坐标方程;
(2)若C2上的点Q对应的参数为,P为C1上的动点,求PQ的最小值.

如图所示,AB是半径为1的圆O的直径,过点A,B分别引弦AD和BE,相交于点C,过点C作CF⊥AB,垂足为点F.

(1)求证:AE•BC=AC•BD;
(2)求BC•BE+AC•AD的值.

已知函数f(x)=1﹣ax+lnx,
(1)若函数在x=2处的切线斜率为,求实数a的值;
(2)若存在x∈(0,+∞)使f(x)≥0成立,求实数a的范围;
(3)证明对于任意n∈N,n≥2有:

设定义在R上的函数f(x)对于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=﹣2,当x>0时,f(x)<0.
(1)判断f(x)在R上的单调性,并加以证明;
(2)当﹣2015≤x≤2015时,不等式f(x)≤k恒成立,求实数k的取值范围.

一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号