如图1,在平面直角坐标系中有一个,点
,点
,将其沿直线AC翻折,翻折后图形为
.动点P从点O出发,沿折线
的方向以每秒2个单位的速度向B运动,同时动点Q从点B出发,在线段BO上以每秒1个单位的速度向点O运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t(秒).
设
的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
如图2,固定
,将
绕点C逆时针旋转,旋转后得到的三角形为
,设
与AC交于点D,当
时,求线段CD的长;
如图3,在
绕点C逆时针旋转的过程中,若设
所在直线与OA所在直线的交点为E,是否存在点E使
为等腰三角形,若存在,求出点E的坐标,若不存在,请说明理由.
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式;
如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
解方程:2(x-3)=3x(x-3).
如图:抛物线y=-x2+bx+c交x轴于A、B,直线y=x+2过点A,交y轴于C,交抛物线于D,且D的纵坐标为5.
(1)求抛物线解析式;
(2)点P为抛物线在第一象限的图象上一点,直线PC交x轴于点E,若PC=3CE,求点P的坐标;
(3)在(2)的条件下,点Q为x轴上一点,把△PCQ沿CQ翻折,点P刚好落在x轴上点G处,求Q点的坐标.
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元并且不得低于50元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,库存少而获利最大?每个月最大的利润是多少元?