已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。
(1) 求梯形ODPC的面积S与时间t的函数关系式。
(2) t为何值时,四边形PODB是平行四边形?
(3) 在线段PB上是否存在一点Q,使得ODQP为菱形。若存在求t值,若不存在,说明理由。
(4) 当△OPD为等腰三角形时,求点P的坐标。
在△ABC中,E、F分别是AC、BC边上的点,P1、P2、P3、…、Pn﹣1是AB边的n等分点,CE=AC,CF=
BC.如图1,若∠B=40°,AB=BC,则∠EP1F+∠EP2F+∠EP3F+…+∠EPn﹣1F= 度;如图2,若∠A=α,∠B=β,则∠EP1F+∠EP2F+∠EP3F+…+∠EPn﹣1F= (用含α,β的式子表示).
在△ABC中,AC=BC=2,∠C=90°.将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交边AC、CB于点D、E.
(1)如图①,当PD⊥AC时,则DC+CE的值是 .
(2)如图②,当PD与AC不垂直时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)如图③,在∠DPE内作∠MPN=45°,使得PM、PN分别交DC、CE于点M、N,连接MN.那么△CMN的周长是否为定值?若是,求出定值;若不是,请说明理由.
如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.
(1)求证:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面积.
已知:⊙O的半径长为5,点A、B、C在⊙O上,AB=BC=6,点E在射线BC上.
(1)如图1,联结AE、CE,求证:AE=CE;
(2)如图2,以点C为圆心,CO为半径画弧交半径OB于D,求BD的长.
(3)当OE=时,求线段AE的长.
在平面直角坐标系xOy(如图)中,已知A(﹣1,3),B(2,n)两点在二次函数y=﹣x2+bx+4的图象上.
(1)求b与n的值;
(2)联结OA、OB、AB,求△AOB的面积;
(3)若点P(不与点A重合)在题目中给出的二次函数的图象上,且∠POB=45°,求点P的坐标.