观察与发现:
在一次数学课堂上,老师把三角形纸片ABC(AB>AC)沿过A点的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).有同学说此时的△AEF是等腰三角形,你同意吗?请说明理由.实践与运用
将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点处,折痕为EG(如图④);再展平纸片(如图⑤).试问:图⑤中∠
的大小是多少?(直接回答,不用说明理由).
如图,是⊙
的直径,
是⊙
上一点,
是
的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.
(1)求证:AF⊥EF;
(2)若,AB=5,求线段BE的长.
如图,平行四边形ABCD中,点E是AD边上一点,且 CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.
(1)画出△DEC平移后的三角形;
(2)若BC=,BD=6,CE=3,求AG的长.
已知关于的一元二次方程
有两个不相等的实数根.
(1)求的取值范围;
(2)若为小于2的整数,且方程的根都是整数,求
的值.
已知,求代数式
的值.
如图,C,D为线段AB上两点,且AC=BD,AE∥BF.AE=BF.求证:∠E=∠F.